半离散AKNS系统的对称与代数结构

Ablowitz-Ladik方程族论文 对称和Lie代数论文 半离散AKNS方程族论文 连续极限论文
论文详情
本文主要研究若干经典的半离散可积模型,系统地建立这些模型的无穷多对称及Lie代数结构.这些模型包括:·4-位势Ablowitz-Ladik方程族.·半离散AKNS方程族.·可积半离散非线性Schr(o|¨)dinger方程.·半离散mKdV方程.论文首先研究4-位势Ablowitz-Ladik等谱与非等谱方程族的对称.从4-位势Ablowitz-Ladik谱问题出发得到其方程族,并将方程族表示成un,t = LmH(0),其中L是递推算子, m不再只是自然数,而是定义在整个整数范围上.利用等谱流与非等谱流的零曲率表示构造出等谱与非等谱方程族的两组无限多的对称.这些对称生成的两个无穷维Lie代数是无中心的Kac-Moody-Virasoro代数.证明递推算子L是等谱方程族的遗传强对称,并给出非等谱方程族的一个强对称.此外,我们找到了4-位势Ablowitz-Ladik方程族、对称和Lie代数与2-位势的相关结果之间的关系: 4-位势第偶数个方程及其对称和代数结构对应着2-位势的情况,递推算子的平方L2对应着2-位势的递推算子.其次,论文考虑与Ablowitz-Ladik方程族有关的系统的对称,即构造半离散AKNS方程族、可积半离散非线性Schr(o|¨)dinger方程和半离散mKdV方程的对称.借助2-位势Ablowitz-Ladik系统,利用对二阶导数的中心差分离散的思想,通过拼接得到半离散AKNS等谱流、非等谱流和递推算子L.在连续极限下半离散AKNS等谱流和非等谱流成为AKNS系统的流,递推算子成为AKNS递推算子的平方.这些等谱流和非等谱流生成一个Lie代数,其代数结构对构造半离散AKNS系统及其约化系统的对称和Lie代数都起着关键的作用.而这个Lie代数与连续系统里的代数结构不同,不再是无中心的Kac-Moody-Virasoro代数.我们根据连续极限理论和引入“阶”的定义来解释这两者之间在连续极限过程中产生的代数变形.向量形式的可积半离散非线性Schr(o|¨)dinger方程族和半离散mKdV方程族可以分别通过对半离散AKNS系统强加约化Rn = -εQn·和Rn =-εQn得到.而(标量形式的)半离散非线性Schr(o|¨)dinger方程族的对称及Lie代数的生成必须满足Lie括号约化的封闭性.此外,通过选取新的等谱流和非等谱流以及递推算子L0,可以得到另一类半离散AKNS方程族,进而通过约化得到新的半离散非线性Schr(o|¨)dinger和半离散mKdV方程族,作用连续极限后它们也可以分别连续到连续NLS和mKdV系统里的结果.最后讨论半离散AKNS方程族的双Hamilton结构及其连续极限.通过引入2-位势Ablowitz-Ladik方程族的多Hamilton结构以及递推算子分解中的逆辛算子θ和辛算子J,将θ和J进行不同的线性组合,我们得到半离散AKNS方程族的递推算子的多种逆辛-辛分解,进而给出其双Hamilton结构.而在连续极限的作用下,半离散AKNS方程族的双Hamilton结构可以连续到AKNS方程族的双Hamilton结构.
摘要第7-9页
Abstract第9-10页
第一章 绪论第14-22页
    1.1 引言第14页
    1.2 孤立子理论的产生和发展第14-15页
    1.3 半离散可积系统第15-18页
    1.4 Ablowitz-Ladik 系统第18页
    1.5 半离散AKNS 系统及约化第18-19页
    1.6 连续极限第19-20页
    1.7 本文的主要工作第20-22页
第二章 预备知识第22-28页
    2.1 与离散问题相联系的基本符号与概念第22-23页
    2.2 对称的定义及性质第23-24页
    2.3 广义Hamilton 可积第24-28页
第三章 4- 位势 Ablowitz-Ladik 方程族的对称第28-57页
    3.1 4- 位势 Ablowitz-Ladik 谱问题第28-30页
    3.2 4- 位势 Ablowitz-Ladik 方程族与零曲率表示第30-42页
        3.2.1 4- 位势 Ablowitz-Ladik 等谱流第30-35页
        3.2.2 4- 位势 Ablowitz-Ladik 非等谱流第35-38页
        3.2.3 4- 位势 Ablowitz-Ladik 等谱方程族的遗传强对称第38-40页
        3.2.4 4- 位势 Ablowitz-Ladik 等谱流和非等谱流的零曲率表示第40-42页
    3.3 4- 位势 Ablowitz-Ladik 方程族的对称及其 Lie 代数结构第42-52页
        3.3.1 4- 位势 Ablowitz-Ladik 等谱流和非等谱流的 Lie 代数结构第42-45页
        3.3.2 4- 位势 Ablowitz-Ladik 等谱和非等谱方程族的对称第45-48页
        3.3.3 递推算子与流的关系第48-50页
        3.3.4 4- 位势 Ablowitz-Ladik 非等谱方程族的强对称第50-52页
    3.4 4 个位势约化成2 个位势第52-57页
        3.4.1 约化条件(Sn,Tn) = (0,0)第52-55页
        3.4.2 对称第55-57页
第四章 半离散 AKNS 方程族的对称及其约化第57-86页
    4.1 准备工作第57-58页
    4.2 半离散AKNS 方程族的等谱流和非等谱流第58-59页
    4.3 半离散AKNS 方程族的对称及其Lie 代数第59-64页
        4.3.1 半离散AKNS 等谱流和非等谱流的Lie 代数结构第60-62页
        4.3.2 半离散AKNS 等谱方程族的对称第62-63页
        4.3.3 递推算子与流的关系第63-64页
    4.4 可积半离散非线性Schr(o|¨)dinger 方程的对称第64-71页
        4.4.1 半离散 NLS 等谱和非等谱方程族第64-67页
        4.4.2 Lie 括号[[·,·]] 的约化相容性条件第67-68页
        4.4.3 半离散NLS 等谱方程族的对称第68-71页
    4.5 半离散m KdV 方程族的对称第71-75页
        4.5.1 半离散m KdV 等谱和非等谱方程族第71-73页
        4.5.2 半离散m KdV 等谱方程族的对称第73-75页
    4.6 连续极限第75-86页
        4.6.1 准备工作第75-77页
        4.6.2 方程族之间的连续关系第77-80页
        4.6.3 Lie 代数之间的连续关系第80-81页
        4.6.4 对称之间的连续关系第81-86页
第五章 半离散 AKNS 等谱方程族的双Hamilton 结构第86-104页
    5.1 准备工作第86-88页
        5.1.1 Ablowitz-Ladik 方程族的多Hamilton 结构第86-87页
        5.1.2 AKNS 方程族的双 Hamilton 结构第87-88页
    5.2 半离散AKNS 等谱方程族的遗传强对称第88-90页
    5.3 半离散AKNS 等谱方程族的双Hamilton 结构第90-99页
        5.3.1 L = L - 21 + L~(-1)第90-95页
        5.3.2 L_0 = 12(L - L~(-1))第95-99页
    5.4 连续极限第99-104页
        5.4.1 L = L - 21 + L~(-1)第99-102页
        5.4.2 L_0 = 21(L - L~(-1))第102-104页
参考文献第104-114页
博士期间研究成果第114-115页
致谢第115-116页
论文购买
论文编号ABS541510,这篇论文共116页
会员购买按0.30元/页下载,共需支付34.8
不是会员,注册会员
会员更优惠充值送钱
直接购买按0.5元/页下载,共需要支付58
只需这篇论文,无需注册!
直接网上支付,方便快捷!
相关论文

点击收藏 | 在线购卡 | 站内搜索 | 网站地图
版权所有 艾博士论文 Copyright(C) All Rights Reserved
版权申明:本文摘要目录由会员***投稿,艾博士论文编辑,如作者需要删除论文目录请通过QQ告知我们,承诺24小时内删除。
联系方式: QQ:277865656