Pt催化剂上丙烷脱氢反应与结焦动力学

丙烷脱氢论文 动力学论文 结焦论文 粒径效应论文 PtSn/Al_2O_3催化剂论文
论文详情
当今世界对丙烯的需求量呈稳步增长的趋势,而丙烷催化脱氢是一个增产丙烯的有效途径。因此,对丙烷脱氢过程的动力学以及结焦过程等方面的研究具有十分重要的意义。就面向工业化应用而言,本文分别研究了工业化双金属PtSn催化剂上丙烷脱氢过程中的脱氢动力学、结焦动力学、烧焦动力学,以及催化剂上生成的焦的性质。这些研究有利于工业反应器的设计以及丙烯生产、催化剂烧焦再生过程的操作条件的优化、控制。就面向基础研究而言,本文则研究了单金属Pt催化剂上Pt颗粒粒径和Sn的添加对丙烷脱氢动力学以及结焦行为的影响,建立了丙烷脱氢过程中Pt催化剂结构与催化性能之间的关系;探索了借助微观动力学分析来建立动力学模型的可行性。这些研究则有助于更好地认识丙烷脱氢反应过程,从而有助于方便快速地建立更加可靠的动力学模型,同时还有助于高性能工业催化剂的设计、开发。本文首先建立了工业化的PtSn催化剂上的全面的丙烷脱氢动力学模型,该模型包括脱氢模型、裂解模型、结焦模型以及失活模型。通过假设不同的反应机理和速率控制步骤,得到数个脱氢模型,并从拟合精度和参数个数两方面考虑,辨别出最优的模型。此外,通过数学推导,本文还将催化剂失活函数与结焦速率相关联。该处理方法在基于催化剂失活机理的同时,还避免了在线测量催化剂结焦量的难题。丙烷脱氢过程中,催化剂失活主要是由结焦引起。因此,有效避免催化剂快速失活和充分认识焦的性质分别对反应和催化剂再生过程有重要的现实意义。为此,本文在工业化的PtSn催化剂上研究了反应条件对结焦速率以及焦的性质的影响。研究发现,PtSn催化剂上生成了两种形式的焦,分别为金属上的焦和载体上的焦。丙烯浓度的增加导致焦的石墨化程度的升高;氢气浓度的增加导致焦的石墨化程度的降低。催化剂金属上结焦反应对丙烷的反应级数是1.7,而对丙烯和氢气的反应级数均是零级;载体上的结焦反应对丙烷的反应级数是1.4级,对丙烯的反应级数是1.0级,而对氢气的反应级数则为-0.7级。此外,根据动力学分析,本文得到了催化剂上的结焦机理。并分别建立了金属上和载体上的结焦动力学模型。烧焦动力学对催化剂烧焦操作条件的优化具有十分重要的意义。本文采用程序升温氧化的方法对PtSn催化剂的烧焦动力学进行了研究,分别建立了金属上的焦和载体上的焦的燃烧动力学。该动力学较好地预测了不同条件下的实验结果。两种焦的燃烧活化能分别约为86 kJ/mol和218 kJ/mol。为加深对Pt催化剂上丙烷脱氢过程的理解,以便建立更加全面、可靠的动力学模型,本文从单金属Pt催化剂出发,研究了金属Pt颗粒粒径对催化剂脱氢动力学以及结焦性能的影响。研究发现,丙烷脱氢是结构敏感的反应,丙烷的反应速率随着催化剂金属Pt颗粒粒径的增大而减小,但丙烯选择性则随着金属Pt颗粒粒径的增大而增大。当催化剂Pt颗粒粒径为4.6nm时,丙烯生成速率最高。对所有催化剂而言,丙烷的表观反应级数始终为一级,而氢气的表观反应级数则随着Pt颗粒粒径的增大逐渐从零级减小至-0.51级。同时脱氢反应的表观活化能随着Pt颗粒粒径的增大而增大。不同大小的Pt颗粒上的结焦行为也不同:催化剂的结焦速率随着金属Pt颗粒的增大而减小;焦的芳香性以及石墨化程度也随着金属Pt颗粒粒径的增加而变弱。传统的动力学研究方法是根据相关理论、文献,假设反应机理和速率控制步骤,推导出动力学模型,然后用实验数据对动力学参数进行回归。然而在此过程中,为确保模型参数的可靠性,需要大量的实验数据,实验量巨大。本文则尝试了一种新的动力学研究方法,即用微观动力学分析的手段建立动力学模型。首先用密度泛函理论(Density Functional Theory, DFT)计算模型中涉及到的动力学参数,然后根据微观动力学分析结果建立宏观动力学模型。微观动力学模拟结果显示,模型对单金属Pt催化剂上的动力学行为有较好的预测。如果用部分实验数据对个别参数进行优化调整,可以使模型对实验数据预测的准确程度大大提高。与传统的动力学研究方法相比,该方法可以得到较为可靠的动力学参数,同时又可大大减少动力学研究的实验量。工业上(Oleflex工艺)采用的是PtSn双金属催化剂,是因为Sn的添加有利于提高Pt催化剂对产物丙烯的选择性以及催化剂自身的稳定性。然而Sn的添加对Pt催化剂结焦行为,尤其是动力学行为的影响尚缺乏深入认识。因此,本文在对单金属Pt催化剂进行活性、稳定性等方面研究的基础上,研究了Sn的添加对Pt催化剂动力学和结焦行为的影响。实验研究发现,Pt/Al2O3和PtSn/Al2O3催化剂上脱氢反应对丙烷和氢气的表观反应级数相同,表观反应活化能相近。该结果表明,我们可以通过对Pt催化剂上丙烷脱氢反应过程的研究来在一定程度上认识PtSn催化剂上丙烷脱氢反应过程。本文在比较Pt催化剂和PtSn催化剂动力学行为的基础上,借助于Pt催化剂上的研究成果建立了PtSn催化剂上的微观动力学模型,并得到,PtSn催化剂上的速率控制步骤是第一步脱氢,吸附的氢原子是表面最丰富物种。该微观动力学模型可以较好地解释PtSn催化剂上的动力学现象。此外,Sn的加入提高了Pt催化剂的结焦速率,增强了生成的焦的石墨化程度。同时,Sn的加入促进了焦前体从金属到载体的迁移,从而可以有效防止Pt金属被生成的焦迅速覆盖。
摘要第5-7页
Abstract第7-9页
第1章 绪论第14-18页
    1.1 研究背景第14-16页
    1.2 研究内容第16-18页
第2章 文献综述第18-32页
    2.1 丙烯第18-19页
    2.2 丙烷脱氢制丙烯工艺第19-21页
    2.3 丙烷脱氢Pt催化剂相关研究进展第21-24页
        2.3.1 Pt金属粒径的影响第22页
        2.3.2 Sn金属的加入以及Pt、Sn金属比例的影响第22-23页
        2.3.3 催化剂焙烧温度的影响第23页
        2.3.4 第三(或第四)组分加入的影响第23-24页
        2.3.5 载体的影响第24页
    2.4 丙烷脱氢动力学以及结焦/烧焦过程研究第24-30页
        2.4.1 丙烷脱氢动力学研究进展第24-27页
        2.4.2 丙烷脱氢中结焦过程研究第27页
        2.4.3 烧焦动力学研究第27-30页
    2.5 动力学研究方法第30-32页
        2.5.1 化学动力学的研究方法第30-31页
        2.5.2 微观动力学分析第31-32页
第3章 丙烷脱氢反应动力学研究第32-47页
    3.1 引言第32页
    3.2 实验部分第32-36页
        3.2.1 催化剂的制备与表征第32-33页
        3.2.2 实验装置与分析方法第33-34页
        3.2.3 空白实验第34-35页
        3.2.4 内外扩散的排除第35-36页
        3.2.5 动力学实验条件第36页
    3.3 动力学模型的建立第36-39页
        3.3.1 脱氢动力学模型第36-38页
        3.3.2 裂解动力学模型第38页
        3.3.3 结焦/失活动力学模型第38-39页
    3.4 动力学实验结果第39-40页
    3.5 模型辨别与参数估计第40-45页
    3.6 本章小结第45-47页
第4章 丙烷脱氢过程结焦动力学与焦性质研究第47-61页
    4.1 引言第47页
    4.2 实验部分第47-48页
        4.2.1 催化剂制备与表征第47页
        4.2.2 催化剂结焦实验第47-48页
        4.2.3 结焦催化剂的表征第48页
    4.3 实验结果第48-55页
        4.3.1 热重分析结果第48-51页
        4.3.2 元素分析结果第51页
        4.3.3 红外光谱第51-53页
        4.3.4 拉曼光谱第53-54页
        4.3.5 丙烷、丙烯和氢气的反应级数第54-55页
    4.4 讨论第55-60页
        4.4.1 TPO曲线氧化峰的归属第55-56页
        4.4.2 焦的性质第56页
        4.4.3 结焦速率与气相组成的关系第56-57页
        4.4.4 结焦机理第57-60页
    4.5 本章小结第60-61页
第5章 丙烷脱氢催化剂的烧焦动力学第61-77页
    5.1 引言第61页
    5.2 烧焦动力学实验第61-62页
    5.3 外扩散影响的排除第62-66页
    5.4 内扩散影响的排除第66-69页
    5.5 烧焦动力学模型第69-71页
    5.6 实验结果第71-74页
        5.6.1 热重分析结果第71页
        5.6.2 程序升温氧化结果第71-73页
        5.6.3 焦的H/C比第73-74页
    5.7 模型参数回归第74-76页
    5.8 本章小结第76-77页
第6章 Pt颗粒粒径对Pt催化剂丙烷脱氢动力学及结焦性能的影响第77-91页
    6.1 引言第77页
    6.2 催化剂制备与表征第77-78页
    6.3 催化剂考评第78-79页
    6.4 实验结果与讨论第79-90页
        6.4.1 Pt催化剂第79-81页
        6.4.2 催化剂活性和选择性的粒径效应第81-82页
        6.4.3 不同催化剂上的动力学行为第82-85页
        6.4.4 不同催化剂上的结焦性能第85-90页
    6.5 本章小结第90-91页
第7章 基于微观动力学分析的丙烷脱氢动力学第91-107页
    7.1 引言第91页
    7.2 实验部分第91-92页
        7.2.1 催化剂的制备与表征第91页
        7.2.2 催化剂考评条件第91-92页
        7.2.3 DFT计算细节第92页
    7.3 动力学模型第92-95页
        7.3.1 微观动力学模型第92-94页
        7.3.2 LHHW动力学模型第94-95页
    7.4 实验与模拟结果第95-101页
        7.4.1 催化剂表征结果第95-98页
        7.4.2 动力学实验结果第98页
        7.4.3 微观反应动力学模拟结果第98-101页
            7.4.3.1 Pt(111)面上的微观反应动力学第98-100页
            7.4.3.2 Pt(211)面上的微观反应动力学第100-101页
        7.4.4 LHHW模型预测结果第101页
    7.5 讨论第101-106页
        7.5.1 丙烷脱氢动力学的粒径效应第101-102页
        7.5.2 实验结果与模拟结果差异分析第102-103页
        7.5.3 LHHW模型参数优化第103-106页
    7.6 本章小结第106-107页
第8章 Sn对Pt催化剂丙烷脱氢动力学及结焦性能的影响第107-123页
    8.1 引言第107页
    8.2 催化剂的制备与表征第107-108页
    8.3 催化剂考评第108页
    8.4 Sn的添加对催化剂脱氢性能的影响第108-114页
        8.4.1 Sn的添加对催化剂脱氢活性的影响第108-112页
        8.4.2 Sn的添加对各产物选择性的影响第112-114页
    8.5 Sn的添加对Pt催化剂脱氢动力学的影响第114-117页
    8.6 Sn的添加对催化剂结焦性能的影响第117-119页
    8.7 PtSn/Al_2O_3催化剂上微观反应动力学分析第119-122页
    8.8 本章小结第122-123页
第9章 全文总结第123-126页
参考文献第126-140页
致谢第140-141页
附录第141页
论文购买
论文编号ABS544053,这篇论文共141页
会员购买按0.30元/页下载,共需支付42.3
不是会员,注册会员
会员更优惠充值送钱
直接购买按0.5元/页下载,共需要支付70.5
只需这篇论文,无需注册!
直接网上支付,方便快捷!
相关论文

点击收藏 | 在线购卡 | 站内搜索 | 网站地图
版权所有 艾博士论文 Copyright(C) All Rights Reserved
版权申明:本文摘要目录由会员***投稿,艾博士论文编辑,如作者需要删除论文目录请通过QQ告知我们,承诺24小时内删除。
联系方式: QQ:277865656