全空间上几类非线性椭圆动力系统解的存在性及相关动力学行为

椭圆动力系统论文 薛定谔方程论文 弱解论文 变分法论文 紧性条件论文 山路定理论文
论文详情
非线性动力系统的概念起源于19世纪末对振动、湍流、天体运动等力学现象的研究.经过一百多年的发展,非线性动力学已经取得重大成就.非线性动力学理论不仅在自然科学和工程技术领域(特别是在机械装备、车辆系统、机电耦合系统、电力系统、航天器系统和微系统等)得到应用,而且在经济和社会领域也有广泛应用.本论文研究微系统中的几类非线性椭圆动力系统.这几类椭圆动力系统在微系统(量子力学)中是最基本的非线性动力系统,它们在量子力学中的地位与牛顿方程在经典力学中的地位相当.自该系统提出以来,对于其解的存在性及其解的性态的研究,一直是力学和数学工作者关注的焦点.本文运用临界点理论在一些适当的假设条件下得到了全空间上几类椭圆动力系统解和多解的存在性,并且进一步研究了解的变号和解的集中等性态,改进和推广了一些已有的结果.本文的绪论部分简单介绍了非线性椭圆动力系统的背景、变分法中的一些基本结果和本文的主要工作.本文从第二章到第六章分别对全空间上的四类椭圆动力系统进行了深入的讨论,对一些已有的结果做了改进和完善.本文第二章研究带有一般非线性项的奇异耦合的椭圆系统基态解的存在性,并且研究得到了该基态解具有集中等性态Beyon和Jeanjean只研究了标量方程,得到了解的存在性和解具有集中现象.而Pomponio和Secchi虽然研究了在全空间R3上的耦合系统存在径向对称的基态解,但是并没有研究解的集中现象.因而,本文第二章在上述文献的基础上,研究得到了全空间上扰动耦合系统的基态解具有集中等性态,推广和改进了已有的工作.本文第三章利用Nehari流形分解等变分法知识研究了在全空间上带有凹凸非线性项和变号权函数的临界奇异椭圆系统,得到了该类系统在全空间上正解和多个正解的存在性.该研究结果对以往的工作是一个改进和推广本文第四章和第五章运用山路定理分别研究带磁势和临界增长的扰动非线性椭圆标量方程和非线性椭圆系统,得到了椭圆方程和椭圆系统半经典解的存在性和多解的存在性.以往工作只研究了临界增长的不带磁势的扰动非线性椭圆方程和系统的解存在性,因而,第四章和第五章的研究结果推广和完善了已有工作.本文第六章研究在全空间上带有临界增长非线性项的p-拉普拉斯系统的解存在性,得到了系统存在山路形式的极小极大解,从而推广和改进了已有的工作.
致谢第5-6页
摘要第6-7页
Abstract第7-8页
Extended Abstract第9-12页
目录第12-16页
变量注释表第16-17页
1 绪论第17-37页
    1.1 动力系统与薛定谔方程的力学背景和发展概况第17-24页
    1.2 变分法的发展概况第24-30页
    1.3 本文的主要工作简介第30-37页
2 带有一般非线性项的耦合非线性薛定谔系统的驻波解第37-63页
    2.1 引言及主要结果第37-41页
    2.2 预备知识和必要的注记第41-43页
    2.3 极限问题和极小极大能量水平第43-60页
    2.4 定理证明第60-63页
3 带变号权函数的临界奇异椭圆系统多个正解存在性第63-79页
    3.1 引言及主要结果第63-65页
    3.2 预备知识和必要注记第65-68页
    3.3 Nehari流形第68-72页
    3.4 定理证明第72-79页
4 带有磁势的薛定谔方程的解存在性第79-91页
    4.1 引言第79-81页
    4.2 一个等价的变分问题第81-82页
    4.3 (PS)序列第82-87页
    4.4 山路结构及定理证明第87-91页
5 带磁势的扰动薛定谔系统的多解存在性第91-113页
    5.1 引言第91-94页
    5.2 预备知识第94-97页
    5.3 (PS)_c序列和山路结构第97-109页
    5.4 定理证明第109-113页
6 R~N上带临界非线性项的扰动p-Laplacian系统的解存在性第113-127页
    6.1 引言及主要结果第113-115页
    6.2 预备知识和必要的注记第115-116页
    6.3 (PS)序列的紧性和山路几何结构第116-125页
    6.4 主要结果的证明第125-127页
7 结论第127-129页
参考文献第129-139页
作者简历第139-143页
学位论文数据集第143页
论文购买
论文编号ABS557953,这篇论文共143页
会员购买按0.30元/页下载,共需支付42.9
不是会员,注册会员
会员更优惠充值送钱
直接购买按0.5元/页下载,共需要支付71.5
只需这篇论文,无需注册!
直接网上支付,方便快捷!
相关论文

点击收藏 | 在线购卡 | 站内搜索 | 网站地图
版权所有 艾博士论文 Copyright(C) All Rights Reserved
版权申明:本文摘要目录由会员***投稿,艾博士论文编辑,如作者需要删除论文目录请通过QQ告知我们,承诺24小时内删除。
联系方式: QQ:277865656