低透煤层水力致裂增透与驱赶瓦斯效应研究

低透煤层论文 水力致裂论文 瓦斯驱赶论文 增透论文 流固耦合论文
论文详情
煤层水力致裂增透是低透气性煤层瓦斯抽采、突出煤层消突的有效技术途径,特别是对于单一低透煤层。本文以含瓦斯煤层水力致裂驱赶为研究对象,基于大量的实验和现场试验,并结合理论分析等研究方法对低透煤层水力致裂增透与驱赶瓦斯效应进行了较为系统的研究,具有重要理论意义和广泛工程应用前景。通过扫描电镜、压汞实验和亲水性实验等研究了煤层孔隙裂隙结构特征。煤层的内部结构由节理-割理与层理-微裂隙-孔隙四级空间结构体系组成。煤层质软、瓦斯的吸附解吸效应、天然裂缝发育等因素导致煤体水力致裂变得复杂。薛湖煤矿二2煤层裂隙比较发育,绝大多数裂隙宽度在1~10μm之间,孔隙率平均为4.73%,接触角平均51.15°,润湿性好;孔隙体积主要由微孔构成,小孔次之;表面积构成主要由微孔贡献构成。孔隙率大,骨架分维数会降低,逾渗分维数增加。煤的润湿性影响毛细管压力大小,进而影响含瓦斯煤层水力致裂增透抽采过程中水和瓦斯两相不混溶流体在孔隙裂隙系统中流动的界面压力差。采用真三轴水力致裂实验系统研究了煤体水力致裂的裂缝扩展规律。水压裂缝的形态整体呈椭圆形态扩展,水压裂缝的扩展方向平行于最大主应力方向。最大主应力与最小主应力的差值越小,对应的破裂压力越大;围压主应力差越小,水压裂缝越容易发生空间转向。钻孔径向水压裂缝的产生首先必须满足最小主应力方向为钻孔轴向方向,同时沿钻孔致裂段轴向存在局部应力集中或缺陷。增大水力致裂排量,裂缝扩展的动力效应变明显,水压裂缝越易出现分叉与转向,裂缝表面的粗糙度也增大。煤层水力致裂会形成以三维应力控制的水压主裂缝为基础,两侧是交叉贯通扩展的成组张开节理的空间裂缝网络系统。含瓦斯煤层水力致裂应采用大排量快速致裂工艺,达到产生较多且范围大的水压裂缝,利于后续排水采气等目的。在MTS试验机上采用瞬态压力脉冲法实验研究了煤体固液耦合的结构及渗透性演变规律,包括煤体全应力应变、卸围压和变渗透水压差过程的渗透性变化测试。煤体的渗透性与其内部的结构密切相关。在固液耦合不产生损伤的条件下,瞬态渗透系数整体与水力梯度成正比关系。在固液耦合作用下,渗透水压力可引起结构面的错动闭合或导致破裂碎屑集聚堵塞渗流通道。在假三轴和恒定轴压条件下,煤样卸围压过程中的变形主要为径向膨胀变形。卸围压过程中,体积应变综合反映了煤样内裂隙增生、张开等损伤。当轴压大于单轴抗压强度且小于三轴抗压强度时,煤样卸围压过程中典型的卸围压-体积应变曲线分为三个阶段,分别为弹性变形恢复、塑性变形和破坏阶段。煤体卸围压过程渗透系数的变化规律与其体积应变变化规律一致,煤样的损伤和渗透系数的变化存在卸围压阀值和卸围压拐点。高于此阀值,渗透系数快速增加;煤样的力学性质和初始应力状态决定了卸围压阀值大小。卸围压超过拐点值,煤样宏观破裂,渗透系数急剧增大。发现并研究了含瓦斯煤层水力致裂的瓦斯驱赶现象。含瓦斯煤层水力致裂在产生水压裂缝的同时,压力水向裂缝两侧渗透,孔隙水压力与孔隙裂隙内的游离瓦斯接触,引起裂缝围岩内孔隙水和瓦斯压力的变化,孔隙压力分布的不均匀会产生孔隙压力梯度。游离态瓦斯由孔隙(瓦斯)压力高的位置向孔隙(瓦斯)压力低的位置运移。瓦斯压力梯度是煤层水力致裂驱赶瓦斯的根本动力。煤矿井下高瓦斯煤层注水常会引起回风流瓦斯浓度有一定的升高,这是煤层注水驱赶瓦斯导致的结果。突出煤层掘进工作面深孔水力致裂后,后续掘进过程中煤体瓦斯含量呈现“低-高-低”的现象,验证了含瓦斯煤层水力致裂瓦斯驱赶现象的存在。水压裂缝扩展的不均匀性和瓦斯驱赶的时间效应会引起瓦斯驱赶的不均匀。在实践中针对瓦斯驱赶现象应该扬长避短。提出并实施了突出煤层深孔水力致裂驱赶与浅孔抽采消突技术。通过优化水力致裂钻孔布置、互为卸压孔和观测孔、深封孔短封孔长度等保障了突出煤层掘进头超前深孔水力致裂驱赶的安全性。实践证明,通过超前深孔水力致裂和浅孔瓦斯抽采相结合的方式,实现了突出煤层掘进头增透、弱化、瓦斯驱赶、抽采与注水湿润的有机结合,有效地提高了瓦斯抽采率和消除了突出危险性。薛湖矿突出煤层掘进节省了10个区域孔的工程量和施工时间,减少了瓦斯抽采时间,具有显著的技术经济效益。
致谢第5-6页
摘要第6-8页
Abstract第8-10页
Extended Abstract第11-15页
目录第15-17页
Contents第17-19页
图清单第19-27页
表清单第27-29页
1 绪论第29-45页
    1.1 研究背景及意义第29-30页
    1.2 高瓦斯低透气性煤层增透方法第30-31页
    1.3 研究现状及发展趋势第31-43页
    1.4 本文研究内容第43-44页
    1.5 主要创新点第44-45页
2 煤层孔隙裂隙结构特征第45-66页
    2.1 层面与裂缝发育特征第45-46页
    2.2 微裂隙发育特征的扫描电镜观测第46-54页
    2.3 孔隙特征压汞实验第54-61页
    2.4 煤的亲水性实验第61-65页
    2.5 小结第65-66页
3 煤体水力致裂增透的水压裂缝扩展规律第66-108页
    3.1 真三轴水力致裂实验系统简介第66-67页
    3.2 水力致裂裂缝扩展的基本规律第67-72页
    3.3 注液排量对煤岩体水力致裂的影响第72-75页
    3.4 围岩主应力差对煤岩体水力致裂的影响第75-83页
    3.5 钻孔径向水压裂缝的产生条件第83-88页
    3.6 煤体水力致裂裂缝扩展规律第88-105页
    3.7 小结第105-108页
4 煤体固液耦合的结构及渗透性演变规律第108-124页
    4.1 实验方案第108-111页
    4.2 固液耦合作用对渗透性的影响第111-116页
    4.3 煤体卸围压过程中的损伤与渗透性演变规律第116-121页
    4.4 渗透压力对煤体渗透系数的影响第121-122页
    4.5 小结第122-124页
5 含瓦斯煤层水力致裂的瓦斯驱赶现象第124-136页
    5.1 高瓦斯煤层注水的回风流瓦斯浓度升高现象第124-126页
    5.2 瓦斯驱赶现象的验证第126-131页
    5.3 水力致裂的瓦斯驱赶原理第131-134页
    5.4 瓦斯驱赶现象的应用第134-135页
    5.5 小结第135-136页
6 突出煤层深孔水力致裂驱赶与浅孔抽采消突技术及应用第136-163页
    6.1 试验工作面条件第136-138页
    6.2 矿井原先区域消突措施第138页
    6.3 水力致裂驱赶区域消突方案第138-144页
    6.4 现场实施过程第144-151页
    6.5 试验效果分析第151-161页
    6.6 小结第161-163页
7 结论与展望第163-166页
    7.1 主要结论第163-165页
    7.2 研究展望第165-166页
参考文献第166-179页
作者简历第179-182页
学位论文数据集第182页
论文购买
论文编号ABS557973,这篇论文共182页
会员购买按0.30元/页下载,共需支付54.6
不是会员,注册会员
会员更优惠充值送钱
直接购买按0.5元/页下载,共需要支付91
只需这篇论文,无需注册!
直接网上支付,方便快捷!
相关论文

点击收藏 | 在线购卡 | 站内搜索 | 网站地图
版权所有 艾博士论文 Copyright(C) All Rights Reserved
版权申明:本文摘要目录由会员***投稿,艾博士论文编辑,如作者需要删除论文目录请通过QQ告知我们,承诺24小时内删除。
联系方式: QQ:277865656